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Abstract A stochastic network model is developed which

describes the 3D morphology of the pore space in fibre-

based materials. It has the form of a random geometric

graph, where the vertex set is modelled by random point

processes and the edges are put using tools from graph

theory and Markov chain Monte Carlo simulation. The

model parameters are fitted to real image data gained by

X-ray synchrotron tomography. In particular, they are

specified in such a way that the distributions of vertex

degrees and edge lengths, respectively, coincide to a large

extent for real and simulated data. Furthermore, the net-

work model is used to introduce a morphology-based

notion of pores and their sizes. The model is validated by

considering physical characteristics which are relevant for

transport processes in the pore space, like geometric tor-

tuosity, i.e., the distribution of shortest path lengths

through the material relative to its thickness.

Introduction

A stochastic network model is developed which is based on

methods from stochastic geometry and spatial statistics; see

[12, 21] for comprehensive surveys on recent results in

these fields. It describes the 3D morphology of pore systems

in fibre-based materials and can be used for scenario anal-

yses e.g., with the objective of developing improved

materials and technologies for renewable energies. In par-

ticular, porous materials are considered where the solid

phase consists of a rather complex system of curved fibres.

They mainly run parallel to some fixed 2D plane, say the

x–y plane, forming wafers with small thicknesses (along the

z-axis) which can be seen as stacks of thin layers of fibres.

Such nonwoven-type materials are used e.g., in the gas-

diffusion layer (GDL) of polymeric fuel cells; see Fig. 1.

Recently, several models for the solid phase of GDL, in

particular for the fibre system itself, have been proposed

where the pore space is considered as complementary set

[16, 17, 36, 43, 48]. However, this indirect description of

pore space often leads to very complex geometric struc-

tures, i.e., it is described by huge sets of voxels, which

make numerical simulations of transport processes quite

complicated and computer time consuming, especially for

large domains.

In this article, a stochastic network model is developed

which has the form of a random geometric graph, repre-

senting the pore space directly. It can be applied e.g., to

investigate transport processes in GDL on a large scale.

Furthermore, the model can be used to introduce a mor-

phology-based notion of pores and their sizes. The model

parameters are fitted to real image data gained by X-ray

synchrotron tomography. In particular, they are specified in

such a way that the distributions of vertex degrees and edge

lengths, respectively, coincide to a large extent for real and

simulated data.

The vertex set of the random geometric graph is con-

structed by a stack of 2D point processes, which can be

seen as a point process in 3D, whose points have contin-

uous x- and y-coordinates, but discrete z-coordinates. Then,

by ‘‘smearing’’ the z-coordinates in an appropriate way, a
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point process in 3D is obtained, where all three coordinates

of its points are continuous random variables. These points

can physically be interpreted as candidates for pore centres.

Their minimum distances to the solid phase, so-called

contact distances, can be seen as marks which describe

pore sizes. Note that in the network extracted from syn-

chrotron data, the contact distances of neighboring vertices

are strongly (positively) correlated. Thus, they cannot be

modelled just by independent marking, but a certain

moving-average procedure is proposed, which mimics this

correlation structure quite well. For details concerning

point processes in multidimensional spaces and their

statistical inference and simulation, we refer e.g., to [4, 15,

28, 41].

The edges are constructed combining tools from graph

theory and Markov chain Monte Carlo (MCMC) simula-

tion; see e.g., [22, 45]. Candidates for vertex degrees, i.e.,

the numbers of edges outgoing from vertices, are sampled

in an independent and identically distributed (iid) way,

using the histogram of vertex degrees which has been

computed from synchrotron data. This is followed by an

acceptance–rejection procedure which ensures that the

conditions of the Erdös–Gallai theorem are fulfilled,

regarding the existence of graphs for a given configuration

of vertex degrees. Then, for an admissible configuration

of vertex degrees, edges are put using the well-known

Hakimi-Havel algorithm (HH-algorithm) of graph theory.

However, this algorithm does not take into account the

locations of vertices, which means that in general the dis-

tribution of edge lengths computed from synchrotron data

is not fitted well. Thus, in order to minimize this discrep-

ancy, the HH-algorithm is supplemented by an MCMC

procedure to rearrange edges in such a way that the dis-

tribution of vertex degrees is kept fixed and, simulta-

neously, the fit of the empirical distribution of edge lengths

computed from synchrotron data is improved.

Finally, the network model is validated by considering

characteristics like the minimum spanning tree (MST) and

geometric tortuosity, i.e., the distribution of shortest path

lengths through the material relative to its thickness. It

turns out that both characteristics coincide quite nicely for

real and simulated data.

As already mentioned above, the network model

developed in this article is motivated by computer-based

scenario analyses with the general objective of developing

improved materials and technologies for renewable ener-

gies. In particular, our model has been fitted to synchrotron

data for nonwoven-type materials used e.g., in the GDL of

fuel cells which is responsible for transport/diffusion of

oxygen and hydrogen towards the electrode, where elec-

tricity is produced. Furthermore, as a by-product of the

electrochemical processes in low temperature fuel cells,

liquid water is produced which has to be drained off. Note

that all these transport processes take place in the pore

phase of the GDL, i.e., the phase which is not occupied by

fibres or binder, see e.g., [27].

Recently, several models have been proposed in litera-

ture describing the solid phase of fibre-based GDL, i.e., the

fibres themselves and the binder [16, 17, 36, 43, 48].

However, these models are focused on GDL materials of

paper type where the fibres can be approximated by straight

lines. For the solid phase of nonwoven-type GDL with

clearly curved fibres, no stochastic models are available so

far which would describe their microstructure sufficiently

well. However, there can also be found models for fibre-

based materials and their analysis in the literature in other

contexts, see e.g., [3, 10].

Moreover, an important disadvantage of the micro-

structure models existing so far for the solid phase of

paper-type GDL is that the pore space is only described

indirectly, as complement of the solid phase. This results in

a description of the pore space by a huge set of voxels

which complicates numerical computations especially with

respect to run time and memory requirements. Further-

more, it restricts the size of domains in which the micro-

structure of GDL can be analyzed by numerical

computations. At first glance, an alternative could be to

reduce the resolution of data, but this would coarsen the

microstructure which causes inaccuracies. Thus, to avoid

these conflicts between run time and accuracy, we propose

a direct description of the pore space by 3D random geo-

metric graphs. The advantages of this representation are

manifold. First of all, the pore space is now described

directly and numerical computations on the edges of a

graph can be done relatively easily. In addition, the pro-

posed graph model is off-grid, i.e., the computations on the

graph can be realized in terms of Euclidean coordinates

which do not depend on any given resolution.

Fig. 1 2D SEM image of the considered nonwoven-type GDL
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We also mention that the idea to represent pore systems

by 3D graphs is not completely new; see e.g., [5, 44]. But

no off-grid models exist so far which could be used for

stochastic simulation and scenario analysis based on real

3D image data. On the other hand, some authors consider

grid-based graph models for the pore space of GDL; see

[13, 38, 39]. But these graph models for the pore space do

not take into account its real microstructure. The pores are

located just on a grid and the models are calibrated with

respect to global physical characteristics as, e.g., perme-

ability. In contrast to this type of global model fitting, the

model which we propose in this article is fitted to local

microstructural characteristics of the pore space. They are

computed from real 3D image data gained by means of

X-ray synchrotron tomography; see [14, 26].

In addition, fibre-based materials with other applications

than GDL in fuel cells have been investigated with tech-

niques from spatial statistics and stochastic geometry. For

instance, a multi-layer model for the fibres of nonwoven mats

with application to coalescers is discussed and analyzed in

[1]. Furthermore, several techniques have been developed to

extract pore sizes from (2D and 3D) simulated fibre-based

materials, wherefore specific properties of randomly placed

fibres in the plane are used, see e.g., [9, 31, 33, 34].

The article is organized as follows. In ‘‘Preprocessing of

image data’’, the 3D image data are described which are

used to fit the graph model. Then, in ‘‘Stochastic modelling

of vertices’’, the vertex model based on random point

processes is explained. In ‘‘Marked point processes’’, the

marking of vertices is described, whereas in ‘‘Stochastic

modelling of edges’’ the edge model is introduced. Some

issues of model validation are discussed in ‘‘Validation of

the network model’’. Finally, ‘‘Summary and conclusions’’

summarizes the results.

Preprocessing of image data

In this section, the 3D image data are described gained by

means of X-ray synchrotron tomography. Then, their bina-

rization and skeletonization is briefly explained. In particu-

lar, the construction of vertices and edges of graphs

representing the pore space is described, and a morphology-

based approach to the notions of pores and their sizes is

given.

Data description

In order to fit a random graph model to the microstructure

of real GDL materials, we use 3D image data which are

gained by means of X-ray synchrotron tomography as

described e.g., in [14, 26]. These data are gray scale images

which have to be preprocessed. This is done in the same

way as in [43], i.e., first using a certain filter to smooth the

data, then to binarize them by (global) thresholding, and,

subsequently, using an opening to remove small objects

which are not connected to the fibre system. The binari-

zation threshold is chosen such that the estimated porosity

in the resulting binary image, i.e., the volume fraction of

the pore space, is about 75%. Further details on this type

of morphological image processing can be found in e.g.,

[18, 30, 40].

In order to keep the computational effort for extracting

graphs from real data at a reasonable level, we consider

cutouts of the original 3D data set. These cutouts are cu-

boids with 512 9 512 9 100 voxels, which corresponds to

images of size 768 9 768 9 150 lm3. To randomize the

locations where the cutouts are taken we apply a bootstrap,

i.e., the locations of cutouts are chosen at random; see e.g.,

[23]. We consider 50 such data sets as our sample drawn

from the original (synchrotron) data. Notice that the cor-

responding cuboids do not have to be completely disjoint.

Extraction of graphs

Note that a 3D image of (segmented) synchrotron data is

given as a stack of 2D binary images, i.e., the 3D infor-

mation is given as a 3D matrix with entries being equal to 0

and 1 representing occupied voxels (solid phase) and pore

space, respectively. To extract a graph from the voxelized

pore space, a skeletonization of pore space is applied. The

principal idea is to change voxels belonging to the pore

space into background voxels in such a way that just a thin

line is left over with thickness of one voxel, where the

connectivity of the skeleton should be the same as the

connectivity of the original pore space. An example in 2D

is shown in Fig. 2, where Fig. 2a displays three objects

(white). We are interested in skeletonization of the black

phase between these objects as our focus is directed to pore

space. Figure 2b shows the skeleton of the pore space. For

this skeletonization in 3D, we use an algorithm described

in [11]. Subsequently, the skeleton is transformed into

vector data by classifying skeleton voxels into ‘‘end vox-

els’’, ‘‘line segment voxels’’, and ‘‘junctions’’, respectively,

where all voxels of the skeleton with exactly one neighbor

are said to be end voxels, all voxels with exactly two

neighbors are line segment voxels, and all voxels with

more than two neighbors are junctions. If a junction con-

sists of more than one voxel, the centre of gravity is

assumed to be the location of the junction.

The end voxels and junctions form the vertices of the

graph to be constructed. Connecting some pairs of them by

line segments leads to a 3D graph. An example in 2D is

shown in Fig. 2c. Note that such a connection of vertices will

be represented by a polygonal track instead of just by one

single segment if the connection is not straight but curved.
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To reduce boundary effects in fitting our model to the

extracted graphs, we apply a minus sampling, i.e., we

neglect data which are too close to the boundary of the

sampling window.

Detection of pores

A problem in computing pore size distributions for mate-

rials with high porosity (of about 75%) is the (unique)

definition of pores as geometrical objects. However, using

the 3D graph introduced in ‘‘Extraction of graphs’’, we can

consider all vertices of the graph as potential pore centres;

see also [44]. The pore size is then the spherical distance of

such a pore centre to the solid phase. But, if we took all

vertices as pore centres, some pores would be contained

partially or completely in other pores. Therefore, only

those vertices are considered as pore centres, which are not

contained in larger pores, otherwise the number of small

pores would be overestimated.

The following algorithm is used to determine the pore

size distribution. For each potential pore, i.e., vertex of the

graph, the spherical distance to the solid phase is com-

puted. This can be done very efficiently using a distance

transformation as described e.g., in [32]. The potential

pores are then ordered according to their sizes. Beginning

with the largest pore, all other potential pores with pore

centres belonging to that pore are deleted from the list of

potential pores. Then, for the largest remaining (i.e., not yet

deleted) pore the same procedure is realized, and so on.

The result is a set of pores which can mutually overlap, but

no pore contains a centre of another pore. An illustrating

example is given in Fig. 3. In Fig. 3a, all potential pores

are shown, i.e., each vertex is seen as a potential pore

centre and the balls around are the corresponding pores. In

Fig. 3b, only those balls are shown which are classified as

pores.

The notion of pore size distribution is of special interest

in electrochemistry, because characteristics of this type can

be accessed directly from real GDL by porosimetric

methods such as mercury or water porosimetry; see e.g.,

[2, 25]. However, note that the results of physical porosi-

metric measurements do not coincide with the pore size

distribution of graphs extracted from 3D images, because

the analysis of e.g., mercury porosimetry results uses lots

of assumptions about the structure of pores which are not

fulfilled for real GDL materials; see e.g., [24]. A systematic

comparison of our results for pore size distributions based

on graphs extracted from 3D images with those obtained by

porosimetric methods will be the subject of a forthcoming

article. Note that a similar attempt has been considered in

[29].

Modified graph describing the pore system

According to the morphology-based definition of pores

given in ‘‘Detection of pores’’, we slightly modify the

graph considered in ‘‘Extraction of graphs’’, where we

delete all those vertices which have not been classified as

pore centres. This implies that those edges such that at least

one of their endpoints is deleted, have to be changed as

well. Note that these endpoints are then shifted towards the

vertices classified as pore centres in whose pores they are

located in. This is done in a way that all pores which were

connected before are still connected in the modified graph,

Fig. 2 Skeletonization in 2D:

a pore space (black),

b skeletonized pore space (black
line in pore space),

and c transformation into vector

data

Fig. 3 Definition of pores:

a all vertices of the graph with

spherical distances to the solid

phase and b deletion to those

balls which are not classified as

pores
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see Fig. 4a. Furthermore, if there are some overlapping

pores which have no common edge, we add such an edge to

the graph, see Fig. 4b.

Stochastic modelling of vertices

The stochastic network model is constructed in two steps.

First, the vertices of the random geometric graph are

modelled which is described in this section. Then, for a

given set of vertices, the edge set is constructed which is

explained in ‘‘Stochastic modelling of edges’’.

Multi-layer representation

The basic idea for modelling the vertices of the 3D graph

described in ‘‘Extraction of graphs’’ is to use a multi-layer

representation of vertices. This is motivated by the

microstructure of real GDL; see Fig. 5 which shows the

profile of the fibre-based porous material. In Fig. 5, it is

clearly visible that the fibres are orientated (more or less)

horizontally. Thus, they can be seen as a stack of thin

layers formed by planar fibre systems. Therefore, it is

plausible to assume that also the complement of the fibres,

i.e., the pore space, has such a multi-layer structure. Note

that a similar approach has been used in [43] to model the

solid phase of paper-type GDL.

The fibres of the nonwoven-type GDL considered in this

article have a thickness of about 9–10 lm. So, we assume

that the fibre system forms a stack of thin layers (parallel to

the surface of the GDL), each with a thickness of 9 lm.

Furthermore, we decompose the 3D point pattern of ver-

tices into the same type of thin layers, with the same

thickness of 9 lm. In order to model these layers of ver-

tices we project all points of a given layer onto its base,

being parallel to the x–y plane, say. These 2D point patterns

are then the data basis for fitting our vertex model.

Point-process model

For establishing an adequate point-process model for the

vertices, we start with analysing the given set of vertices of

the 3D graph introduced in ‘‘Extraction of graphs’’. There-

fore, we use the pair-correlation function (or g-function) g :

½0;1� ! ½0;1Þ which can be interpreted as follows. For

values r, where g(r) is larger than 1, there are more point pairs

with distance r to each other compared to a Poisson point

process with the same intensity as the currently considered

point process. If g(r) is smaller than 1 for a value r, there are

less point pairs with this distance and, in particular, if

g(r) vanishes for a value of r, there are no point pairs with

such a distance. Thus, the pair-correlation function in Fig. 6

Fig. 4 Modification of the

graph: a elimination of vertices

that are no pore centres and b
adding of edges if pores overlap

Fig. 5 Profile of a nonwoven-type GDL
Fig. 6 Pair-correlation functions for real (dashed line) and simulated

data (gray solid lines)

J Mater Sci (2011) 46:7745–7759 7749

123



estimated from the point pattern of vertices of the 3D

graph introduced in ‘‘Extraction of graphs’’ indicates

strong clustering of vertices with an unusually high peak at

small distances of about 4–5lm; see e.g., [15] for esti-

mators of the g-function. This suggests the idea to fit a

clustered point-process model with narrow and, simulta-

neously, elongated clusters.

Generalized Thomas process and its pair-correlation

function

As a model for the (projected) 2D point patterns described

in ‘‘Multi-layer representation’’, we thus use a generalized

Thomas process with elliptically shaped clusters; see e.g.,

[7]. This cluster model has the following structure. The

parent points form a stationary Poisson point process with

intensity kp. The random number of child points per cluster

is Poisson distributed with expectation c, and the random

deviations of child points from their parent points are given

via a 2D normal distribution N(o, C), with expectation

vector o and covariance matrix

C ¼ r2
1 0

0 r2
2

� �
:

In addition, according to the uniform distribution on the

interval (0, 2p), the child points of each cluster are jointly

rotated around their parent point. In this way, it is ensured

that the generalized Thomas process is isotropic, although

it possesses elliptically shaped clusters. Note that as points

of the generalized Thomas process, only the child points

are considered.

To fit the generalized Thomas process, its pair-correla-

tion function gh : ð0;1Þ ! ½0;1Þ is considered, where

h = (kp, r1
2, r2

2). Note that the value gh(r) is proportional to

the frequency of point pairs with distance r [ 0 from each

other. The following formula holds (see e.g., [7, 47]):

ghðrÞ ¼ 1þ 1

4pkpr1r2

exp �r2 r2
1 þ r2

2

8r2
1r

2
2

� �
I0 r2 r2

1 � r2
2

8r2
1r

2
2

� �
;

r� 0;

where I0 denotes the modified Bessel function which can

be evaluated by

I0ðzÞ ¼
X1
k¼0

ð1=4z2Þk

ðk!Þ2
; z 2 R:

Model fitting

The pair-correlation function is estimated for overall 50

cutouts of synchrotron data, where a standard (boundary-

corrected) estimator is used; see e.g., [15]. As already

mentioned above, each cutout is divided into thin layers

with a thickness of 9 lm and the vertices are projected onto

their bases. The pair-correlation function is then estimated

for all these 2D data sets separately and the pointwise

average of the estimated pair-correlation functions is

computed which will be denoted by bgðrÞ in the following.

In order to fit the Thomas process to data, four param-

eters have to be determined: kp, c, r1
2, and r2

2, where a

minimum-contrast method can be used with respect to the

pair-correlation function. This means that the following

minimization problem has to be solved:

f ðhÞ ¼
Zr2

r1

bgðrÞ � ghðrÞð Þ2dr �! min

for an appropriately chosen pair r1, r2 [ 0. Then a

minimum-contrast estimator bh ¼ ðbkp; br2
1; br2

2Þ for h is

given by bh ¼ arg minh f ðhÞ: The mean number c of child

points per cluster is estimated using the formula

bc ¼ bk
bkp

;

where bk denotes the natural estimator of the over all

intensity k which can be estimated quite easily, just by

counting the number of all points in the sampling window

divided by its volume. On a scale where one distance unit

corresponds to 1.0 lm, the result of this fitting is bkp ¼
0:000533; bc ¼ 2:28; br2

1 ¼ 4:5; br2
2 ¼ 78:75: Thus, the esti-

mated variances br2
1 and br2

2 are rather different, which

means that the fitted Thomas process has clusters with

clearly elongated shapes.

‘‘Smearing’’ of points along the z-axis

Finally, the projection of vertices in z-direction onto the

bases of thin layers mentioned in ‘‘Multi-layer represen-

tation’’ has to be reversed. To incorporate this reversal step

into the vertex model, we proceed in the following way.

Note that besides clustering, a certain hard-core effect is

observed in the point pattern of vertices of the 3D graph

introduced in ‘‘Extraction of graphs’’. This is a result of

the skeletonization and transformation into vector data,

respectively, because possible vertices which are too close

together are identified as one single vertex. Therefore, also

in the vertex model, a (small) hard-core distance has to

be included. Furthermore, analysing the z-coordinates

observed in the point pattern of vertices of the 3D graph, it

can be seen that they are almost uniformly distributed, see

Fig. 7. Besides, looking at the pair-correlation function

given in Fig. 6, we see that there are many point pairs with a

distance of about 4–5 lm. In order to incorporate all these

structural properties into the 3D vertex model, we do not
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shift the points of the 2D Thomas processes independently

from each other along the z-axis. But, we apply a dependent

shifting which is based on the following property of

exponential distribution: For any fixed k C 1, let

Z1; . . .; Zk � Expð1kÞ be independent and exponentially dis-

tributed random variables. Then minfZ1; . . .; Zkg � Expð1Þ
and, therefore, exp �minfZ1; . . .; Zkgð Þ � Uð0; 1Þ:

We use this property for k = 4. Thus, considering a

sample of a Thomas process which has n [ 0 points in the

sampling window, we associate these points with indepen-

dent random variables Z1; . . .; Zn � Expð1
4
Þ and, for the ith

point of these n points, i ¼ 1; . . .; n; we consider its three

closest neighbors with indices i1; i2; i3 2 f1; . . .; ng n fig;
say. Then, we shift the ith point within the corresponding

layer along the z-axis, according to exp �minfZi; Zi1 ;ð
Zi2 ; Zi3gÞ � Uð0; 1Þ (suitably scaled to the thickness of the

layer). This dependent shifting along the z-axis ensures that

the principal structure of the clustered Thomas processes

does not change.

Finally, to incorporate a hard-core distance into the

model, we apply a subsequent shift of the points along the

z-axis if two points are too close to each other. Therefore,

we look at that pair of points of the complete 3D point

pattern which are closest to each other and choose one of

these two points at random. This point is then again shifted

along the z-axis within the corresponding layer, according

to a uniformly distributed random variable. This is repeated

until the required hard-core distance of 3 lm is achieved

for all points, or if no further improvement is possible.

Model validation

In order to validate the point-process model proposed in

‘‘Point-process model’’, we consider two different charac-

teristics of stationary point processes: the distribution func-

tion of (spherical) contact distances H : ½0;1Þ ! ½0; 1�;

and the nearest-neighbor-distance distribution function

D : ½0;1Þ ! ½0; 1�: Note that H(r) is the probability that

the distance from an arbitrary location in R
3; chosen at

random, to the closest point of the point process is not larger

than r, r [ 0. Similarly, D(r) is the probability that the dis-

tance from an arbitrary point of the point process, chosen at

random, to its nearest neighbor within the point process is not

larger than r, r [ 0.

Furthermore, we show that the pair-correlation functions

computed from real and simulated 3D point patterns,

respectively, are quite similar to each other.

To verify whether the 3D point-process model fits real

data sufficiently well, we estimate H(r) and D(r) for all 50

cutouts of vertex sets extracted from synchrotron data,

where standard (boundary-corrected) estimators are used;

see e.g., [15]. The pointwise averages of these estimates

are denoted by bHðrÞ and bDðrÞ; respectively. Then, we

compute pointwise 96% confidence bands for the two

point-process characteristics mentioned above, where we

generate 50 samples of the 3D point-process model with

the estimated parameters as given in ‘‘Model fitting’’ in an

sampling window of 768 9 768 9 150 lm3. These bands

are plotted as gray solid lines.

The results for H(r) are visualized in Fig. 8 which shows

that the empirical distribution function bHðrÞ computed

from real data (plotted as black dashed line) is more or less

within the confidence band obtained from simulated data

(gray solid lines). Furthermore, the results for D(r) are

given in Fig. 9. Also for this characteristic the estimates

bDðrÞ (black dashed line) are within the confidence band

obtained from simulated data (gray solid lines).

Regarding the pair-correlation function, the estimate

bgðrÞ which has been computed for the 3D vertex sets

extracted from synchrotron data, does not match the con-

fidence band of simulated data perfectly; see Fig. 6.

However, the main structural properties of bgðrÞ as the

Fig. 7 Estimated distribution of z-coordinate of vertices for some

layers

Fig. 8 Spherical-contact-distance distribution functions for real

(dashed line) and simulated data (gray solid lines)
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hard-core distance, the large peak at about 4 lm, and the

declining rate of the tail towards the level of 1 are not

too different from corresponding properties of the pair-

correlation function computed from simulated data.

Considering all three characteristics together, we can

conclude that the 3D vertex model introduced in ‘‘Point-

process model’’ fits quite well to real data described in

‘‘Preprocessing of image data’’.

Marked point processes

In the preceding section, we introduced a stochastic point-

process model for the vertex set itself extracted from syn-

chrotron data. In order to describe the pore space in more

detail, we now extend this point-process approach to marked

point processes, considering two different types of marks:

the spherical distances of vertices to solid phase and the

numbers of edges emanating from vertices. In the first case,

the marks are closely related with the notion of pore sizes

introduced in ‘‘Detection of pores’’, whereas the second kind

of marks is the degree of vertices, also called the coordina-

tion number in physics and geology. Later on, in ‘‘Stochastic

modelling of edges’’, the distribution of vertex degrees will

be used to model the edges of the random geometric graph.

Spherical contact distances

In case of spherical contact distances of vertices, we fit a

gamma distribution as their (Palm) mark distribution.

However, it turns out that in the network extracted from

synchrotron data, the contact distances of neighboring

vertices are strongly (positively) correlated. Thus, they

cannot be modelled just by independent marking, but a

certain moving-average procedure is proposed, which

mimics this correlation structure quite well.

Data analysis

In a first step, we analyse the spherical contact distances to

solid phase for the vertices extracted from synchrotron

data. Their histogram is shown in Fig. 10. It can be nicely

fitted by a gamma distribution Cðq; fÞ with parameters

q[ 0 (rate) and f[ 0 (shape) using the method of

moments, see e.g., [6]. Its density function fCðq;fÞ : R!
½0;1Þ is given by fCðq;fÞðxÞ ¼ Ifx� 0g

qf

CðfÞ x
ðf�1Þ expð�qxÞ:

More precisely, let x1; . . .; xn be the observed spherical

distances, then the estimator for q is given by bm1=ð bm2 �
ð bm1Þ2Þ and for f by ð bm1Þ2=ð bm2 � ð bm1Þ2Þ with bmk ¼
1
n

Pn
i¼1 xk

i ; k ¼ 1; 2: For the parameters of this gamma dis-

tribution (black curve in Fig. 10), the averaged values of

q = 1.077 and f ¼ 7:331 have been obtained, where the

averages extend over all 50 cutouts from synchrotron data.

Note that due to the estimation of the spherical distances

from 3D image data with a resolution of 1.5 lm, i.e., we

can only observe discrete values, we summarized the

results in a histogram with only some bins which can be

seen as a smoothing of the data.

Furthermore, the correlation structure of spherical con-

tact distances has been analyzed using the so-called mark

correlation function j : ð0;1Þ ! ½�1; 1� of stationary

marked point processes, where j(r) is the correlation of the

marks of an arbitrary pair of points, chosen at random, with

distance r [ 0 from each other. Note that although j is not

a correlation function in the strict sense, see the discussion

in [35], we use this notion (introduced in [42]) since it can

be found in various standard textbooks like [15]. Similar to

the estimation of the functions g(r), H(r), and D(r) dis-

cussed in ‘‘Point-process model’’ and ‘‘Model validation’’,

the mark correlation function is estimated for all 50 cutouts

Fig. 9 Nearest-neighbor-distance distribution functions for real

(dashed line) and simulated data (gray solid lines)

Fig. 10 Histogram of spherical distances of vertices to the solid

phase and density function of the fitted gamma distribution (black
solid line)
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extracted from synchrotron data; see e.g., [15]. The

pointwise average of these estimates is denoted by bjðrÞ: It

is shown in Fig. 11 (black dashed line) and can be inter-

preted as follows. Vertices which are located close to each

other have strongly (positively) correlated contact dis-

tances and, vice versa, the spherical contact distances of

vertices which are far away from each other are more or

less uncorrelated.

Moving-average model for dependent marking

To incorporate the correlation structure mentioned above

into the model, we proceed similar as in ‘‘Smearing of

points along the z-axis’’, now using the fact that the family

of gamma distributions possesses a well-known stability

property with respect to convolution.

If there are n [ 0 points in the sampling window, we

first associate these points with independent random vari-

ables Z1; . . .; Zn � Cðq; f=3Þ; distributed according to the

gamma distribution shown in Fig. 10, where q = 1.077

and f ¼ 7:331: Then, for the ith point of these n points,

i ¼ 1; . . .; n; we consider its two closest neighbors with

indices i1; i2 2 f1; . . .; ng n fig; say. As mark of the ith

point, we finally choose the sum Zi þ Zi1 þ Zi2 ; where we

use the fact that the sum of independent gamma distributed

random variables is again gamma distributed. More pre-

cisely, it holds that

Zi þ Zi1 þ Zi2 �Cðq; fÞ:

This dependent marking of points ensures that the principal

structure of the empirical mark correlation function bjðrÞ
computed in ‘‘Data analysis’’ is captured quite well; see

Fig. 11. In this figure, pointwise 96% confidence bands are

shown (gray solid lines), which were computed from 50

samples of the 3D point-process model with the moving-

average marking as described above.

Detection of pores

For simulated vertex sets and their spherical contact dis-

tances, sampled from the model of a marked point process

as described in ‘‘Point-process model’’ and ‘‘Moving-

average model for dependent marking’’, we can proceed

exactly in the same way as in ‘‘Detection of pores’’ to

detect pore centres within the vertex set of potential pore

centres. Furthermore, for a given subset of vertices detec-

ted as pore centres, we can compute the distribution of their

marks, i.e., pore sizes. Thus, still another possibility of

model validation is given, comparing this distribution with

the pore size distribution which has been computed in

‘‘Detection of pores’’ for real data.

At first glance, one might think that the edge set of the

random geometric graph to be constructed could be built in

a similar way, directly from simulated vertex sets and their

spherical contact distances. For example, just by connect-

ing all those pairs of pore centres whose distances from

each other are smaller than the sum of their pore radii.

However, this happens only for a few pairs of pore centres,

i.e., only a few pores overlap mutually. This means that

most edges of the random geometric graph to be con-

structed should be covered by pores only partially, whereas

their middle parts can be interpreted e.g., as ‘‘throats’’

between pores. Therefore, in order to build an edge model,

we used another approach combining tools from graph

theory and MCMC simulation, which will be explained in

the following sections.

Degrees of vertices

An important characteristic for describing the connectivity

of a graph is the degrees or coordination numbers of its

vertices, i.e., the number of edges emanating from vertices.

Thus, we now consider the vertex degrees as marks for

the point-process model of vertices introduced in ‘‘Point-

process model’’. However, our analysis is not directly

based on the graph extracted from synchrotron data as

described in ‘‘Extraction of graphs’’, but on the modified

graph of pore centres introduced in ‘‘Modified graph

describing the pore system’’.

Data analysis

We first computed the empirical distribution of vertex

degrees for the modified graph, which is shown in Fig. 12a.

Then, we computed the mark-correlation function of vertex

degrees, in the same way as this has been described in

‘‘Data analysis’’ for spherical contact distances. The result

is presented in Fig. 12b, which shows that there is almost

no correlation between vertex degrees. Thus, at first glance,

it seems that the degrees of vertices could be modelled in

Fig. 11 Mark-correlation functions for spherical distances of real

(dashed line) and simulated (gray solid lines) data
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an iid way, according to the distribution shown in Fig. 12a.

However, this would get into conflict with the fact that not

for each configuration of vertex degrees, a graph can be

constructed. A possible solution of this problem is to

combine iid sampling from the distribution shown in

Fig. 12a with a certain acceptance–rejection procedure

which leads to admissible configurations of vertex degrees.

Admissible configurations of vertex degrees

In order to solve the problem mentioned in the previous

section, we propose a two-step algorithm for generating

admissible configurations of vertex degrees. Supposing

that the sample of the random graph to be constructed has

n vertices in the sampling window, we generate an iid

sample d1; . . .; dn [ 0 of candidates for vertex degrees

according to the distribution shown in Fig. 12a. Then,

using the Erdös–Gallai theorem of graph theory, see e.g.,

[45, 46], we check whether d1; . . .; dn is an admissible

configuration of vertex degrees. For this purpose, we

rearrange the numbers d1; . . .; dn [ 0 in descending order

getting the sequence d01� d02� . . .� d0n [ 0; say. In

accordance with the Erdös–Gallai theorem, a simple

graph, i.e., each pair of vertices has at most one direct

connecting edge, can be constructed possessing the con-

figuration d1; . . .; dn [ 0 of vertex degrees if and only if

d1 þ d2 þ . . .þ dn is even, and for all k ¼ 1; . . .; s; where

s is determined by

d0s� s and d0sþ1\sþ 1;

it holds that

Xk

i¼1

d0i � kðk � 1Þ þ
Xn

i¼kþ1

minfk; d0ig:

If the sequence d1; . . .; dn [ 0 of potential vertex degrees

fulfils these conditions, we can construct a graph with

n vertices and vertex degrees d1; . . .; dn [ 0; see ‘‘HH-

algorithm’’ below. Otherwise, we reject the sample

d1; . . .; dn [ 0 and generate a new one according to the

distribution shown in Fig. 12a. This procedure is repeated

until a sequence of vertex degrees is generated which fulfils

the conditions of the Erdös–Gallai theorem.

Stochastic modelling of edges

We now describe a stochastic model for putting the edges

of the random geometric graph which combines tools from

graph theory and MCMC simulation. In particular, the

model is constructed in such a way that the distributions of

vertex degrees and edge lengths, respectively, coincide to a

large extent for real and simulated data.

As already mentioned in ‘‘Degrees of vertices’’, candi-

dates for vertex degrees are sampled in an iid way,

according to the distribution shown in Fig. 12a. Recall that

this is followed by an acceptance–rejection procedure

which ensures that the conditions of the Erdös–Gallai

theorem are fulfilled.

Then, assuming that an admissible configuration of

vertex degrees is given, edges are put using the well-known

HH-algorithm of graph theory. However, this algorithm

does not take into account the locations of vertices, which

means that in general the distribution of edge lengths

computed from synchrotron data is not fitted well. In order

to minimize this discrepancy, the HH-algorithm is supple-

mented by an MCMC procedure to rearrange edges in such

a way that the distribution of vertex degrees is kept fixed

and, simultaneously, the fit of the empirical distribution of

edge lengths computed from synchrotron data is improved.

HH-algorithm

Suppose that the considered sample of the random graph to

be constructed has n vertices in the sampling window and

that an admissible configuration d1; . . .; dn [ 0 of vertex

degrees is given which has been sampled in an iid way,

according to the distribution shown in Fig. 12a. Further-

more, suppose that the integers d1; . . .; dn [ 0 are num-

bered in descending order, i.e., d1� d2� . . .� dn [ 0:

Then, a preliminary version of the edge set is con-

structed using an algorithm which is based on the classical

Fig. 12 Coordination number

analysis: a estimated

distribution of the coordination

number and b estimated mark-

correlation functions
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Hakimi-Havel theorem, see e.g., [45]. This theorem states

that there exists a simple graph with n vertices and degree

sequence d1� d2� . . .� dn [ 0 if and only if there exists

one with n - 1 vertices and degree sequence

d2 � 1; . . .; dd1þ1 � 1; dd1þ2; . . .; dn:

This leads to the following algorithm: suppose that a

sequence d1� d2� . . .� dn [ 0 of vertex degrees is given,

which fulfils the conditions of the Erdös–Gallai theorem.

Assign the vertex degrees d1; . . .; dn at random to the

n vertices. Connect the vertex with degree d1 with those

vertices having degrees d2; . . .; dd1þ1: Then, pick a vertex

with the largest residual (i.e., free) degree, say d0; and

connect this vertex with d0 of other vertices, with which it

is not yet connected and which have the largest residual

degrees. Repeat this procedure until no free degrees are

left.

The result of this construction is a random graph whose

distribution of vertex degrees fits to the corresponding

empirical distribution of vertex degrees estimated from

synchrotron data; see ‘‘Data analysis’’. However, note that

the algorithm described above does not take into account

the locations of vertices, which means that in general the

distribution of edge lengths observed in real image data

may not be fitted very well. Thus, in order to minimize this

discrepancy, the HH-algorithm is supplemented by an

MCMC procedure to rearrange edges in such a way that the

distribution of vertex degrees is kept fixed and, simulta-

neously, the fit of the empirical distribution of edge lengths

computed from synchrotron data is improved.

Distribution of edge lengths

In Fig. 13a, the empirical distribution of edge lengths is

shown which has been computed for the modified graph

extracted from synchrotron data; see ‘‘Modified graph

describing the pore system’’ It turned out that a shifted

gamma distribution Cðq; f; cÞ with parameters q = 2.10

(rate), f ¼ 0:11 (shape), and c = 4.5 lm (shift) can be fitted

to this empirical distribution, using maximum-likelihood

estimation or the method of moments, see e.g., [6].

Thus, the goal is to construct a random geometric graph

which fits sufficiently well both the distribution of vertex

degrees considered in ‘‘Data analysis’’ and the shifted

gamma distribution of egde lengths mentioned above.

Rearrangement of edges

The graph constructed in ‘‘HH-algorithm’’, using the

HH-algorithm, does not fit the empirical edge-length dis-

tribution sufficiently well which has been computed from

real data; see Fig. 13b. Thus, in order to get a better fit, the

HH-algorithm is supplemented by an MCMC procedure

which rearranges the edges in such a way that the distribu-

tion of vertex degrees is kept fixed and, simultaneously, the

fit of the empirical distribution of edge lengths computed

from synchrotron data is improved. For further details on

Markov chains and MCMC simulation see e.g., in [22].

Our MCMC algorithm is based on the following idea.

Let V ¼ fv1; . . .; vng denote the vertex set considered, and

let E ¼ fe1; . . .; ekg be an edge set generated by the

HH-algorithm, say. Furthermore, for any not directly con-

nected pair of edges ei, ej, where i = j, we denote their

endpoints by vi1 ; vi2 and vj1 ; vj2 respectively. Then we

consider all (three) possible connections of the four verti-

ces vi1 ; vi2 ; vj1 ; and vj2 by not directly connected pairs of

edges and evaluate the suitability of these edge pairs.

Eventually, the original pair of edges is replaced by another

pair of edges which is evaluated better, where the evalua-

tion depends on the distance between the (empirical) length

distribution of the current set of edges and the shifted

gamma distribution obtained in ‘‘Distribution of edge

lengths’’.

More precisely, in order to decrease the discrepance

between the (empirical) edge-length distribution of the

current set of edges and the shifted gamma distribution

fitted in ‘‘Distribution of edge lengths’’ to real data, we

Fig. 13 Edge length analysis. Images show the length distribution for edges from a the modified graph and a (shifted) fitted gamma distribution

(black solid line), b the graph generated by the HH-algorithm, and c the graph after MCMC-simulation

J Mater Sci (2011) 46:7745–7759 7755

123



consider two different Markov chains. First, we run an

auxiliary Markov chain that eliminates all those edges

which are too long, replacing them by shorter ones. This

Markov chain is defined in the following way. An edge, say

ei, of the edge set E ¼ fe1; . . .; ekg is chosen with

probability

pi ¼
jeij

max1� ‘� kje‘j
; i ¼ 1; . . .; k;

and another edge, say ej; i 6¼ j; among those edges which

are not directly connected to ei is chosen with probability

pj = |ej| / max1 B ‘ B k |e‘|, where |e| denotes the length of

edge e. Subsequently, all three possible edge combinations

which can be constructed by the endpoints

vi1 ; vi2 ; vj1 ; and vj2 of the chosen edges ei, ej are evaluated,

where the ‘‘value’’ gij of a pair of edges ei, ej is defined as

the sum of their (current) selection probabilities, i.e.,

gij = pi ? pj. If any of the other two possible edge pairs

has a smaller value than ei, ej, then the edges ei, ej are

replaced by that pair of edges. Otherwise, the pair ei, ej is

not replaced. This procedure is continued as long as no

further improvement is found.

Note that the evaluation of edges by this Markov chain

just depends on their lengths, preferring edges which are

short. In other words, we replace a pair of edges ei, ej if one

of the other two, not directly connected pairs of edges has a

shorter summary length. The result is a graph where edges

are as short as possible. Furthermore, the MCMC algorithm

described above helps to avoid numerical problems in

computing the selection probabilities of the following

(main) Markov chain which is defined in a similar way.

Let fCðrÞ denote the density of the shifted C-distribution

derived in ‘‘Distribution of edge lengths’’. The empirical

edge-length density of the current configuration of edges is

denoted by bf ðrÞ: Then an edge ei is chosen with probability

epi ¼ max 0; 1� fCðjeijÞbf ðjeijÞ

( )

and another edge ej among those edges which are not

directly connected to ei is chosen with probability epj ¼
maxf0; 1� fCðjejjÞ=bf ðjejjÞg: Subsequently, all three pos-

sible edge combinations which can be constructed by the

endpoints vi1 ; vi2 ; vj1 ; and vj2 of the chosen edges ei, ej are

evaluated, where the ‘‘value’’ egij of a pair of edges ei, ej is

defined as the sum of their (current) selection probabilities,

i.e., egij ¼ epi þ epj: If any of the other two possible edge

pairs has a smaller value than ei, ej, then the edges ei, ej are

replaced by that pair of edges. Otherwise, the pair ei, ej is

not replaced. Thus, the idea of this Markov chain is to

eliminate edges e which have lengths occurring more often

then required, i.e., fCðjejÞ\bf ðjejÞ:

A realization of the random geometric graph model,

where the edge lengths have been fitted to real data by the

above described MCMC simulation, can be seen in Fig. 14.

Note that Fig. 14 just shows a small cutout of a realization

of the network model describing the pore space of a GDL.

Discussion of MCMC simulation

Note that the rearrangement of edges according to the

MCMC procedure described in ‘‘Rearrangement of edges’’

does not change the distribution of edge degrees. More-

over, the degrees of the individual vertices are not changed

at all. On the other hand, the discrepance between the

(empirical) edge-length distribution of the finally generated

set of edges and the shifted gamma distribution fitted in

‘‘Distribution of edge lengths’’ is essentially improved; see

Fig. 13c.

However, we are aware of the contingency that it might

be possible that not all predetermined edge-length distri-

butions can be achieved by our MCMC procedure. This

mainly depends on the spatial structure of vertex locations

which has an essential influence on possible edge-length

distributions. For example, if there is a hard-core distance

of 5 lm between vertices, no edge with length smaller than

5 lm can be generated. Such a ‘‘lower bound’’ for the

edge-length distribution, i.e., a distribution of edge-lengths

with as much as possible probability mass next to zero, can

be approximated using the first (auxiliary) Markov chain

described in ‘‘Rearrangement of edges’’.

For the image data considered in this article, such a

‘‘lower bound’’ was found by this preprocessing Markov

chain. Then, the second (main) Markov chain shifted the

probability mass away from zero and, as a result of this, the

predetermined shifted C-distribution had a good chance to

be approximated well.

Fig. 14 Small cutout of a simulated 3D random geometric graph
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Another reason why in this case the predetermined dis-

tribution could be fitted well, originates from the fact that all

other components of the stochastic network model have

been fitted quite well to real data. In particular, the vertex

model has nicely been fitted to the vertices extracted from

synchrotron data; see ‘‘Model validation’’. Furthermore,

there is practically no difference between the distributions of

vertex degrees for real and simulated data, respectively.

Note that in the MCMC procedure described in the

previous section, we considered the Kolmogorov distance

of the predetermined and the current (empirical) edge-

length distributions as a stopping criterion. Besides, we

also fixed a maximum number of possible edge rear-

rangements. If this number was reached before the

Kolmogorov distance fallen below a given threshold, then

the simulation was stopped anyway, and the current con-

figuration of the graph is seen as a sample from the random

geometric graph to be constructed.

Validation of the network model

In the preceding sections of this article, the validation of the

stochastic network model has been accomplished only by

means ‘‘local’’ characteristics of various model components.

We now consider two structural characteristics of the whole

model to validate it. They are relevant to transport properties

of pore space and have not been used for model fitting.

MST

An important structural characteristic which describes the

connectivity of graphs is the so-called MST. It is based on

the concept of thinning a graph with the aim to minimize its

total length and, at the same time, to keep its connectivity

preserved. In our context, the MST is a very useful struc-

tural characteristic, because the skeletonization algorithm

considered in ‘‘Extraction of graphs’’ preserves principal

connectivity properties of the complete 3D pore space. So, a

global validation of the random geometric graph model with

respect to connectivity seems to be reasonable.

Note that the total length of a graph is just the sum of the

lengths of its edges. In other words, the principal idea of

the MST is to look at a graph where as many edges as

possible are removed without changing the connectivity,

i.e., all vertices which have been connected before are still

connected. Note, however that the sequences of vertex

degrees of the original graph and its MST are not the same.

In order to practically compute the MST, Prim’s algo-

rithm can be used; see e.g., [8, 19]. The property which is

used for model validation is the relative length q of the

MST in comparison to the length of the original graph,

i.e., we consider the ratio

q ¼ Length of the MST

Length of the original graph
;

which provides important information about the connec-

tivity of the graph. Note that the numerical results which

we obtained for the MST of real and simulated data,

respectively, are very similar to each other; see Table 1.

Geometric tortuosity

Other basic characteristics of porous media, which are

considered when investigating transport properties, are

their porosity and, to describe the pathways through the

materials, their tortuosity. Note that tortuosity is a physical

characteristic which is usually defined as the ratio of the

mean effective path length of a fluid through the pore space

of a porous material and the material thickness, or, in other

words, the mean extension of the real pathway compared to

the minimum distance between two points chosen at ran-

dom; see e.g., [20, 37]. Note that this notion of tortuosity is

given just by a single number, which is not really a mor-

phology-based characteristic.

On the other hand, the notion of geometric tortuosity,

which has been introduced in [44], describes the micro-

structure of pore space in more detail, dealing with the

distribution of shortest path lengths through a porous

material, i.e., it allows for the consideration of probability

distributions and not just mean values.

In order to compute the lengths of shortest paths from

top to bottom of GDL material, along the edges of the 3D

graph representing the pore space, we first have to deter-

mine the starting points of these paths. Therefore, a sta-

tionary planar Poisson point process with some intensity

k[ 0 is simulated on the top of the GDL. Recall that the

sampled point patterns then follow the principle of com-

plete spatial randomness. Choosing this model for the

starting points of shortest paths, we had in mind that e.g.,

gas molecules can start their diffusion/migration at any

point of the GDL surface with the same probability and

independent of each other (in ex situ experiments).

Note that the starting points of shortest paths generated

by the Poisson model mentioned above were not yet

included into the random geometric graph model described

in the preceding sections. So, we had to add these points to

the graph, where each point of the Poisson point process

simulated on the top of the GDL was connected to the

closest vertex of the random graph representing the pore

space.

Then, beginning from the starting points, the shortest

paths along the edges from top to bottom were determined

using Dijkstra’s algorithm; see, e.g., [8, 19]. This analysis

has been done both for the graphs extracted from real 3D

data and for simulated graphs, where we obtained mean
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values and standard deviations as given in Table 1; for the

distributions of shortest path lengths see Fig. 15.

Although, there is no perfect matching of these ‘‘local’’

tortuosity characteristics for real and simulated data,

respectively, the difference between the two mean values is

relatively small and also the principal shapes of the two

histograms representing the distributions of shortest path

lengths are relatively close to each other. This shows that

the stochastic network model proposed in this article is an

appropriate tool to investigate the geometry of and trans-

port processes in the pore space of this type of GDL.

Summary and conclusions

In this article, we developed a model for random geometric

graphs in 3D, where we showed that our model can suc-

cessfully be fitted to graph structures extracted from real

image data. The model is built in several steps. We first

modelled the vertices of the graph to be constructed using a

multi-layer approach, i.e., by a stack of (smeared) 2D point

processes, where the 3D point-process model obtained in

this way has been validated using different morphological

image characteristics from stochastic geometry. Then, for

any given point pattern in 3D, we considered a depending

marking of points, using spherical contact distances as

marks which are closely related to the physical notion of

pore size. In a third step, we proposed an edge model to

reconnect a given set of vertices according to a prespecified

distribution of vertex degrees. For this purpose, we

assigned a sequence of vertex degrees as marks to the

vertices and checked whether such a configuration of ver-

tex degrees allows the construction of a graph or not. If

possible, an algorithm based on the Hakimi-Havel theorem

of graph theory was used to construct a preliminary graph.

However, since this algorithm does not take into account

the locations of vertices, we finally applied an MCMC

simulation to rearrange edges to get a better fit to geometric

properties of graphs observed in real image data.

These steps altogether led to a 3D random geometric

graph which can be simulated relatively easily. A realiza-

tion of this network model can be seen in Fig. 14. More-

over, by partitioning the model construction into different

steps, our stochastic network model becomes quite flexible

having the potential to be successfully applied also to other

porous materials than those considered in this article.

To validate the 3D geometric graph model, morphology-

based image characteristics were considered which were

not used for model fitting. They are related to physical

properties of the fibre-based porous material analyzed in

this article. One of these characteristics was the relative

length of the MST which was used for analysing the con-

nectivity of the graph. The other one was geometric tor-

tuosity, i.e., the ratio of the shortest path length through a

material and the material thickness. Note that also this

morphology-based image characteristic is very important

to investigate transport processes in porous materials.

In an ongoing research, we are analysing the statistical

properties of transport processes along the edges of the

stochastic network model developed in this article. Note

that there are clear computational advantages to investigate

the properties of transport processes on geometric graphs,

i.e., on 1D structures instead of considering a complete 3D

model. In particular, the graph representation of pore space

enables the consideration of much larger domains and,

simultaneously, keeping computer time at reasonable low

levels.
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